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Lecture Notes:
- Program vs Thread:
- Program: Static data on some storage.
- Thread: An instance of a program execution.
- Different threads executing the same program can run concurrently.
- Running threads concurrently:
- A CPU core will run multiple threads concurrently by running each thread for a little

amount of time before switching to another one.
- There is limited direct execution. The CPU will switch to another thread when either the

running thread yields the CPU (non-blocking IO for instance) or the CPU stops the
running thread (system clock interrupt).
E.g.

- Advantages of concurrency:
- From the system perspective, there is better CPU usage resulting in a faster

execution overall but not individually.
- From the user perspective programs seem to be executed in parallel.

- Interrupts:
- There are 2 types of interrupts:

1. External Interrupts/Hardware Interrupts. These are caused by an I/O device
that needs some attention (asynchronous).

2. Internal Interrupts/System calls, exceptions and faults. These are caused by
executing instructions that have faults, such as dividing by 0 or page fault
(synchronous).

- For hardware/external interrupts, this is the naive approach:

Here, I/O devices are wired to Interrupt Request lines (IRQs). This means that it’s not
flexible (hardwired) and that the CPU might get interrupted all the time.
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- A better approach is this:

Here, I/O devices have unique or shared IRQs that are managed by two Programmable
Interrupt Controllers (PIC).

- The PIC is responsible to tell the CPU when and which devices wish to interrupt through
the INTR vector. There are 16 lines of interrupt (IRQ0 - IRQ15), interrupts have different
priority and interrupts can be masked.

- Here are the steps for handling an interrupt:
1. The CPU receives an interrupt on the INTR vector
2. The CPU stops the running program and transfers control to the corresponding

handler in the Interrupt Descriptor Table (IDT)
3. The handler saves the current running program state
4. The handler executes the functionality
5. The handler restores or halt the running program

- These interrupt handlers are defined in:
- Linux: cat /proc/interrupt
- Windows: msinfo32.exe

- E.g. When a key is pressed:
1. The keyboard controller tells PIC to cause an interrupt on IRQ #1
2. The PIC, which decides if the CPU should be notified
3. If so, IRQ 1 is translated into a vector number to index into CPU’s Interrupt

Descriptor Table
4. The CPU stops the current running program
5. The CPU invokes the current handler
6. The handler talks to the keyboard controller via IN and OUT instructions to ask

what key was pressed
7. The handler does something with the result (e.g write to a file in Linux)
8. The handler restores the running program

- Context Switching:
- A context switch is the process of storing the state of a process or thread, so that it can

be restored and resume execution at a later point. This allows multiple processes to
share a single (CPU), and is an essential feature of a multitasking operating system.

- When the CPU runs threads concurrently:
- Only one thread at a time is running (on one core).
- Several threads might be ready to be executed.
- Several threads might be waiting for an I/O response.

- For each thread, the OS needs to keep track of its state (ready, running, waiting) and its
execution context (registers, stack, heap and so on).
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- The different states of a thread:

- Context switching occurs when:
a. When the OS receives a fault:

1. It suspends the execution of the running thread.
2. It terminates the thread.

b. When the OS receives a System Clock Interrupt or a System Call Trap (I/O
request):

1. It suspends the execution of the running thread.
2. It saves its execution context.
3. It changes the thread's state to ready (timeout) or waiting (I/O request).
4. It elects a new thread from the ones in the ready state.
5. It changes its state to running.
6. It restores its execution context.
7. It resumes its execution.

c. When the OS receives any other I/O interrupt:
1. It executes the I/O operation.
2. It switches the thread that was waiting for that I/O operation, into the

ready state.
3. It resumes the execution of the current programs.

- The Thread Control Block (TCB) is a data structure in the operating system kernel
which contains thread-specific information needed to manage it. It contains the following
information:

1. Tid (thread id)
2. State (as either running, ready, waiting)
3. Registers (including eip and esp)
4. User (forthcoming lecture on user space)
5. Pointer to a Process Control Block of the process that the thread lives on

- The OS maintains a collection of state queues with the TCBs of all the threads. There is
one queue for the threads in the ready state and multiple queues for the threads in the
waiting state (one queue for each type of I/O requests).

- Synchronization:
- Process synchronization is the task of coordinating the execution of processes in a

way that no two processes can have access to the same shared data and resources.
- It is specially needed in a multi-process system when multiple processes are running

together, and more than one processes try to gain access to the same shared resource
or data at the same time.

- One main error of synchronization is race condition. Race condition occurs when a
system attempts to perform two or more operations at the same time, but because of the
nature of the device or system, the operations must be done in the proper sequence to
be done correctly.
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- A race condition is a condition of a program where its behavior depends on relative
timing or interleaving of multiple threads or processes. One or more possible outcomes
may be undesirable, resulting in a bug. We refer to this kind of behavior as
nondeterministic.

- Race condition is very hard to catch and fix.
- Example of a race condition:

In the code above, we are using the fork() function to create a child process. Then, the
parent process will print 1 while the child process will print 2.

On my computer, the output is 12.

On the UTSC computer, the output is 21.

In this example, the order doesn’t really matter, but you can imagine in cases when order
does matter, if the program executes in the wrong order, it can be disastrous.

Another issue with race condition is that the order executed depends on the computer
the program is running on. Therefore, it can be hard to detect and fix.
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- We want to use mutual exclusion to synchronize access to shared resources.
- Code that uses mutual exclusion to synchronize its execution is called a critical section.
- Only one thread at a time can execute in the critical section.
- All other threads are forced to wait on entry. The entry to the critical section is handled

by the wait() function, and it is represented as P().
- When a thread leaves a critical section, another can enter. The exit from a critical section

is controlled by the signal() function, represented as V().
- In the critical section, only a single process can be executed. Other processes, waiting to

execute their critical section, need to wait until the current process completes its
execution.

- Requirements for Critical Section:
1. Mutual Exclusion: It states that if one thread is in the critical section, then no

other is. Mutual exclusion ensures safety property (nothing bad happens).
2. Progress: If some thread T is not in the critical section, then T cannot prevent

some other thread S from entering the critical section. A thread in the critical
section will eventually leave it.

3. Bound Waiting: If some thread T is waiting on the critical section, then T will
eventually enter the critical section. Progress and bounded waiting ensures the
liveness property (something good happens).

4. Performance: The overhead of entering and exiting the critical section is small
with respect to the work being done within it.

- There are 3 main ways to achieve synchronization:
1. Lock/Mutex:

- This is a busy waiting solution which can be used for more than two
processes.

- In this mechanism, a variable or flag is used. The flag can have 2 values,
0 or 1. If the flag has a value of 0, that means the critical section is
vacant. If the flag has a value of 1, that means the critical section is
occupied.

- A process which wants to get into the critical section first checks the value
of the flag. If it is 0 then it sets the value to 1 and enters into the critical
section, otherwise it waits.

- The lock supports three operations:
init() creates an unlocked mutex.
acquire() waits until the mutex is unlocked, then locks it to enter the C.S.
release() unlocks the mutex to leave the C.S, waking up anyone waiting
for it.

2. Condition Variable:
- Condition variables are used to wait for a particular condition to become

true.
- A condition variable supports three operations:

cond_wait(cond, lock) unlock the lock and sleep until cond is signaled
then re-acquire lock before resuming execution.
cond_signal(cond) signal the condition cond by waking up the next
thread.
cond_broadcast(cond) signal the condition cond by waking up all
threads
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3. Semaphore:
- A semaphore is simply a variable that is non-negative and shared

between threads. It is used to provide mutual exclusion.
- A semaphore supports two operations:

P()/decrement() blocks until semaphore is open.
V()/increment() allows another thread to enter.

- A semaphore safety property is that the semaphore value is always
greater than or equal to 0.

- Associated with each semaphore is a queue of waiting threads.

When P() is called by a thread:
- If semaphore is open, the thread continues.
- If semaphore is closed, the thread blocks on queue.

Then V() opens the semaphore:
- If a thread is waiting on the queue, the thread is unblocked.
- If no threads are waiting on the queue, the signal is remembered

for the next thread.
- Semaphores may cause deadlock. Deadlock occurs when one thread tries to access a

resource that a second holds, and vice-versa.
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Textbook Notes:
- Concurrency - An Introduction:
- Concurrency - An Introduction:
- A thread is a basic unit of CPU utilization, consisting of a program counter, a stack, and

a set of registers, and a thread ID.
- A multi-threaded program has more than one point of execution. Another way to think

of this is that each thread is very much like a separate process, except for one
difference: they share the same address space and thus can access the same data.

- The state of a single thread is thus very similar to that of a process. It has a program
counter (PC) that tracks where the program is fetching instructions from. Each thread
has its own private set of registers it uses for computation; thus, if there are two
threads, T1 and T2, that are running on a single processor, when switching from running
T1 to running T2, a context switch must take place.

- One other major difference between threads and processes concerns the stack. In a
single-threaded process, there is a single stack, usually residing at the bottom of the
address space. However, in a multi-threaded process, each thread runs independently
and of course may call into various routines to do whatever work it is doing. That means,
there will be a stack per thread. Any stack-allocated variables, parameters, return
values, and other things that we put on the stack will be placed in what is sometimes
called thread-local storage, the stack of the relevant thread.
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- Why Use Threads?:
- There are at least two major reasons you should use threads:

1. Parallelism. Imagine you are writing a program that adds two large arrays
together. If you are running on just a single processor, the task is straightforward:
just perform each operation and be done. However, if you are executing the
program on a system with multiple processors, you have the potential of
speeding up this process considerably by using the processors to each perform a
portion of the work. The task of transforming your standard single-threaded
program into a program that does this sort of work on multiple CPUs is called
parallelization, and using a thread per CPU to do this work is a natural and
typical way to make programs run faster on modern hardware.

2. To avoid blocking program progress due to slow I/O. Imagine that you are writing
a program that performs different types of I/O. Instead of waiting, your program
may wish to do something else, including utilizing the CPU to perform
computation, or even issuing further I/O requests. Using threads is a natural way
to avoid getting stuck; while one thread in your program waits (is blocked waiting
for I/O), the CPU scheduler can switch to other threads, which are ready to run
and do something useful. Threading enables overlap of I/O with other activities
within a single program, much like multiprogramming did for processes across
programs. As a result, many modern server-based applications (web servers,
database management systems, etc) make use of threads in their
implementations.

- An Example - Thread Creation:
- One issue with concurrency and multi-threading is race condition. Consider the

following example: We have a function that creates 2 threads, T1 and T2. T1 will print
“A” and T2 will print “B” and we want the order of the letters printed to be AB.
Unfortunately, if there’s no control process or scheduler, then we might get different
outputs depending on different computers.

- Why It Gets Worse - Shared Data:
- Now, consider the previous example, but this time, instead of T1 and T2 printing A and

B, respectively, they will be updating shared data. Suppose that we have a variable
called num, initialized to be 0, and that T1 performs some mathematical operations and
updates num and T2 uses the new value of num for another function. If T2 runs before
T1 updates num, then the end result will be incorrect.

- The Heart Of The Problem - Uncontrolled Scheduling:
- What we have demonstrated here is called race condition. The results depend on the

timing execution of the code. With some bad luck, such as context switches that occur at
untimely points in the execution, we will get the wrong result. In fact, we may get a
different result each time; thus, instead of a nice deterministic computation, which we are
used to from computers, we call this result indeterminate, where it is not known what the
output will be and it is indeed likely to be different across runs. Because multiple threads
executing this code can result in a race condition, we call this code a critical section. A
critical section is a piece of code that accesses a shared variable and must not be
concurrently executed by more than one thread. What we really want for this code is
what we call mutual exclusion. This property guarantees that if one thread is executing
within the critical section, the others will be prevented from doing so.
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- The Wish For Atomicity:
- Atomic operations are one of the most powerful underlying techniques in building

computer systems, from the computer architecture, to concurrent code, to file systems,
database management systems, and even distributed systems.

- The idea behind making a series of actions atomic is simply expressed with the phrase
“all or nothing”; it should either appear as if all of the actions you wish to group together
occurred, or that none of them occurred, with no in-between state visible. Sometimes,
the grouping of many actions into a single atomic action is called a transaction, an idea
developed in great detail in the world of databases and transaction processing.

- Locks:
- Locks - The Basic Idea:
- A lock is just a variable, and thus to use one, you must declare a lock variable of some

kind. This lock variable holds the state of the lock at any instant in time. It is either
available and thus no thread holds the lock, or acquired and thus exactly one thread
holds the lock and presumably is in a critical section. We could store other information in
the data type as well, such as which thread holds the lock, or a queue for ordering lock
acquisition, but information like that is hidden from the user of the lock.

- Furthermore, we will have 2 functions, lock() and unlock(). Calling lock() tries to acquire
the lock. If the lock is free, then the thread will acquire the lock and enter the critical
section. This thread is sometimes said to be the owner of the lock. If another thread then
calls lock() on that same lock variable, it will not return while the lock is held by another
thread. In this way, other threads are prevented from entering the critical section while
the first thread that holds the lock is in there.

- Once the owner of the lock calls unlock(), the lock is now free again. If no other threads
are waiting for the lock, the state of the lock is simply changed to free. If there are
waiting threads, one of them will notice this change of the lock’s state, acquire the lock,
and enter the critical section.

- Locks provide some minimal amount of control over scheduling to programmers. In
general, we view threads as entities created by the programmer but scheduled by the
OS, in any fashion that the OS chooses. Locks yield some of that control back to the
programmer; by putting a lock around a section of code, the programmer can guarantee
that no more than a single thread can ever be active within that code. Thus locks help
transform the chaos that is traditional OS scheduling into a more controlled activity.

- Pthread Locks:
- The name that the POSIX library uses for a lock is a mutex, as it is used to provide

mutual exclusion between threads.
- Here is the POSIX library lock code:

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
Pthread_mutex_lock(&lock); // wrapper; exits on failure
balance = balance + 1;
Pthread_mutex_unlock(&lock);

- You might also notice here that the POSIX version passes a variable to lock and unlock,
as we may be using different locks to protect different variables. Doing so can increase
concurrency. Instead of one big lock that is used any time any critical section is
accessed, one will often protect different data and data structures with different locks,
thus allowing more threads to be in locked code at once.



CSCC69 Week 2 Notes
10

- Evaluating Locks:
- There are 3 basic criterias for locks to be useful:

1. Whether the lock provides mutual exclusion.
2. Is there fairness? Does each thread contending for the lock get a fair shot at

acquiring it once it is free? Another way to look at this is by examining the more
extreme case: does any thread contending for the lock starve while doing so,
thus never obtaining it?

3. The final criterion is performance, specifically the time overheads added by
using the lock. There are a few different cases that are worth considering here.
One is the case of no contention; when a single thread is running and grabs and
releases the lock, what is the overhead of doing so? Another is the case where
multiple threads are contending for the lock on a single CPU; in this case, are
there performance concerns? Finally, how does the lock perform when there are
multiple CPUs involved, and threads on each contending for the lock?

- Controlling Interrupts:
- One of the earliest solutions used to provide mutual exclusion was to disable interrupts

for critical sections. This solution was invented for single-processor systems.
- By turning off interrupts before entering a critical section, we ensure that the code inside

the critical section will not be interrupted, and thus will execute as if it were atomic. When
we are finished, we re-enable interrupts and thus the program proceeds as usual.

- The main positive of this approach is its simplicity. You certainly don’t have to scratch
your head too hard to figure out why this works. Without interruption, a thread can be
sure that the code it executes will execute and that no other thread will interfere with it.

- The negatives, unfortunately, are many:
1. This approach requires us to allow any calling thread to perform a privileged

operation (turning interrupts on and off), and thus trust that this facility is not
abused. As you already know, any time we are required to trust an arbitrary
program, we are probably in trouble.  Here, the trouble manifests in numerous
ways: a greedy program could call lock() at the beginning of its execution and
thus monopolize the processor; worse, an errant or malicious program could call
lock() and go into an endless loop. In this latter case, the OS never regains
control of the system, and there is only one recourse: restart the system. Using
interrupt disabling as a general purpose synchronization solution requires too
much trust in applications.

2. This approach does not work on multiprocessors. If multiple threads are running
on different CPUs, and each try to enter the same critical section, it does not
matter whether interrupts are disabled; threads will be able to run on other
processors, and thus could enter the critical section. As multiprocessors are now
commonplace, our general solution will have to do better than this.

3. Turning off interrupts for extended periods of time can lead to interrupts
becoming lost, which can lead to serious systems problems. Imagine, for
example, if the CPU missed the fact that a disk device has finished a read
request. How will the OS know to wake the process waiting for said read?

4. This approach can be inefficient. Compared to normal instruction execution, code
that masks or unmasks interrupts tends to be executed slowly by modern CPUs.
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- A Failed Attempt - Just Using Loads/Stores:
- To move beyond interrupt-based techniques, we will have to rely on CPU hardware and

the instructions it provides us to build a proper lock.
- Let’s first try to build a simple lock by using a single flag variable. In this failed attempt,

we’ll see some of the basic ideas needed to build a lock, and see why just using a single
variable and accessing it via normal loads and stores is insufficient.

- Here is the code:
typedef struct __lock_t { int flag; } lock_t;

void init(lock_t *mutex) {
// 0 -> lock is available, 1 -> held
mutex->flag = 0;

}

void lock(lock_t *mutex) {
while (mutex->flag == 1) // TEST the flag

; // spin-wait (do nothing)
mutex->flag = 1; // now SET it!

}

void unlock(lock_t *mutex) {
mutex->flag = 0;

}
- In this first attempt, the idea is quite simple: use a simple variable to indicate whether

some thread has possession of a lock. The first thread that enters the critical section will
call lock(), which tests whether the flag is equal to 1 and then sets the flag to 1 to
indicate that the thread now holds the lock. When finished with the critical section, the
thread calls unlock() and clears the flag, thus indicating that the lock is no longer held. If
another thread happens to call lock() while that first thread is in the critical section, it will
simply spin-wait in the while loop for that thread to call unlock() and clear the flag. Once
that first thread does so, the waiting thread will fall out of the while loop, set the flag to 1
for itself, and proceed into the critical section.

- There are 2 problems with this design:
1. With untimely interrupts, we can have 2 threads both set the variable to 1.
2. This design has bad performance. While a thread waits to acquire a lock that is

already held it endlessly checks the value of the flag, a technique known as
spin-waiting. Spin-waiting wastes time waiting for another thread to release a
lock. The waste is exceptionally high on a uniprocessor, where the thread that the
waiter is waiting for cannot even run.
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- Building Working Spin Locks with Test-And-Set:
- Because disabling interrupts does not work on multiple processors, and because simple

approaches using loads and stores don’t work, system designers started to invent
hardware support for locking.

- The simplest bit of hardware support to understand is known as a test-and-set (or
atomic exchange) instruction.

- Here is the code:

- What the test-and-set instruction does is as follows. It returns the old value pointed to by
the old ptr, and simultaneously updates said value to new. The key is that this sequence
of operations is performed atomically. The reason it is called “test and set” is that it
enables you to “test” the old value while simultaneously setting the memory location to a
new value. As it turns out, this slightly more powerful instruction is enough to build a
simple spin lock.

- Let’s make sure we understand why this lock works. Imagine first the case where a
thread calls lock() and no other thread currently holds the lock; thus, flag should be 0.
When the thread calls TestAndSet(flag, 1), the routine will return the old value of flag,
which is 0; thus, the calling thread, which is testing the value of flag, will not get caught
spinning in the while loop and will acquire the lock. The thread will also atomically set the
value to 1, thus indicating that the lock is now held. When the thread is finished with its
critical section, it calls unlock() to set the flag back to zero.

- The second case we can imagine arises when one thread already has the lock held (i.e.,
flag is 1). In this case, this thread will call lock() and then call TestAndSet(flag, 1) as well.
This time, TestAndSet() will return the old value at flag, which is 1 (because the lock is
held), while simultaneously setting it to 1 again. As long as the lock is held by another
thread, TestAndSet() will repeatedly return 1, and thus this thread will spin and spin until
the lock is finally released. When the flag is finally set to 0 by some other thread, this
thread will call TestAndSet() again, which will now return 0 while atomically setting the
value to 1 and thus acquire the lock and enter the critical section.
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- By making both the test and set a single atomic operation, we ensure that only one
thread acquires the lock. And that’s how to build a working mutual exclusion primitive.

- You may also now understand why this type of lock is usually referred to as a spin lock.
It is the simplest type of lock to build, and simply spins, using CPU cycles, until the lock
becomes available. To work correctly on a single processor, it requires a preemptive
scheduler (one that will interrupt a thread via a timer, in order to run a different thread,
from time to time). Without preemption, spin locks don’t make much sense on a single
CPU, as a thread spinning on a CPU will never relinquish it.

- Evaluating Spin Locks:
- Given our basic spin lock, we can now evaluate how effective it is along our previously

described axes. The most important aspect of a lock is correctness: does it provide
mutual exclusion? The answer here is yes: the spin lock only allows a single thread to
enter the critical section at a time. Thus, we have a correct lock.

- The next axis is fairness. How fair is a spin lock to a waiting thread? Can you guarantee
that a waiting thread will ever enter the critical section? The answer here, unfortunately,
is bad news: spin locks don’t provide any fairness guarantees. Indeed, a thread spinning
may spin forever, under contention. Simple spin locks, as discussed thus far, are not fair
and may lead to starvation.

- The final axis is performance. What are the costs of using a spin lock? To analyze this
more carefully, we suggest thinking about a few different cases. In the first, imagine
threads competing for the lock on a single processor; in the second, consider threads
spread out across many CPUs. For spin locks, in the single CPU case, performance
overheads can be quite painful; imagine the case where the thread holding the lock is
preempted within a critical section. The scheduler might then run every other thread
(imagine there are N − 1 others), each of which tries to acquire the lock. In this case,
each of those threads will spin for the duration of a time slice before giving up the CPU,
a waste of CPU cycles. However, on multiple CPUs, spin locks work reasonably well, if
the number of threads roughly equals the number of CPUs. The thinking goes as follows:
imagine Thread A on CPU 1 and Thread B on CPU 2, both contending for a lock. If
Thread A (CPU 1) grabs the lock, and then Thread B tries to, B will spin (on CPU 2).
However, presumably the critical section is short, and thus soon the lock becomes
available, and is acquired by Thread B. Spinning to wait for a lock held on another
processor doesn’t waste many cycles in this case, and thus can be effective.

- Compare-And-Swap:
- Another hardware primitive that some systems provide is known as the

compare-and-swap instruction or compare-and-exchange.
- Here is the code:

- The basic idea is for compare-and-swap to test whether the value at the address
specified by ptr is equal to expected. If so, update the memory location pointed to by ptr
with the new value. If not, do nothing. In either case, return the original value at that
memory location, thus allowing the code calling compare-and-swap to know whether it
succeeded or not.
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- Load-Linked and Store-Conditional:
- Some platforms provide a pair of instructions that work in concert to help build critical

sections. On the MIPS architecture, for example, the load-linked and store-conditional
instructions can be used in tandem to build locks and other concurrent structures.

- Here is the code:

- The load-linked operates much like a typical load instruction, and simply fetches a value
from memory and places it in a register. The key difference comes with the
store-conditional, which only succeeds (and updates the value stored at the address just
load-linked from) if no intervening store to the address has taken place. In the case of
success, the storeconditional returns 1 and updates the value at ptr to value; if it fails,
the value at ptr is not updated and 0 is returned.

- Fetch-And-Add:
- One final hardware primitive is the fetch-and-add instruction, which atomically

increments a value while returning the old value at a particular address.
- Here is the code:

- Instead of a single value, this solution uses a ticket and turn variable in combination to
build a lock. The basic operation is pretty simple: when a thread wishes to acquire a
lock, it first does an atomic fetch-and-add on the ticket value; that value is now
considered this thread’s “turn” (myturn). The globally shared lock->turn is then used to
determine which thread’s turn it is; when (myturn == turn) for a given thread, it is that
thread’s turn to enter the critical section. Unlock is accomplished simply by incrementing
the turn such that the next waiting thread, if there is one, can now enter the critical
section.

- Note one important difference with this solution versus our previous attempts: it ensures
progress for all threads. Once a thread is assigned its ticket value, it will be scheduled at
some point in the future. In our previous attempts, no such guarantee existed; a thread
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spinning on test-and-set could spin forever even as other threads acquire and release
the lock.

- A Simple Approach - Just Yield:
- Hardware support got us pretty far: working locks, and even fairness in lock acquisition.

However, we still have a problem: what to do when a context switch occurs in a critical
section, and threads start to spin endlessly, waiting for the interrupted (lock-holding)
thread to be run again?

- Our first try is a simple and friendly approach: when you are going to spin, instead give
up the CPU to another thread.

- In this approach, we assume an operating system primitive yield() which a thread can
call when it wants to give up the CPU and let another thread run. A thread can be in one
of three states (running, ready, or blocked). Yield is simply a system call that moves the
caller from the running state to the ready state, and thus promotes another thread to
running. Thus, the yielding thread essentially deschedules itself.

- Think about the example with two threads on one CPU; in this case, our yield-based
approach works quite well. If a thread happens to call lock() and find a lock held, it will
simply yield the CPU, and thus the other thread will run and finish its critical section. In
this simple case, the yielding approach works well.

- Let us now consider the case where there are many threads (say 100) contending for a
lock repeatedly. In this case, if one thread acquires the lock and is preempted before
releasing it, the other 99 will each call lock(), find the lock held, and yield the CPU.
Assuming some kind of round-robin scheduler, each of the 99 will execute this
run-and-yield pattern before the thread holding the lock gets to run again. While better
than our spinning approach, this approach is still costly; the cost of a context switch can
be substantial, and there is thus plenty of waste. Worse, we have not tackled the
starvation problem at all. A thread may get caught in an endless yield loop while other
threads repeatedly enter and exit the critical section. We clearly will need an approach
that addresses this problem directly.

- One good reason to avoid spin locks is performance. If a thread is interrupted while
holding a lock, other threads that use spin locks will spend a large amount of CPU time
just waiting for the lock to become available. However, it turns out there is another
interesting reason to avoid spin locks on some systems: priority inversion. Priority
inversion is a scenario in scheduling in which a high priority task is indirectly preempted
by a lower priority task effectively inverting the relative priorities of the two tasks.

- Let’s assume there are two threads in a system. Thread 2 (T2) has a high scheduling
priority, and Thread 1 (T1) has lower priority. In this example, let’s assume that the CPU
scheduler will always run T2 over T1, if indeed both are runnable; T1 only runs when T2
is not able to do so (e.g., when T2 is blocked on I/O). Now, the problem. Assume T2 is
blocked for some reason. So T1 runs, grabs a spin lock, and enters a critical section. T2
now becomes unblocked (perhaps because an I/O completed), and the CPU scheduler
immediately schedules it (thus descheduling T1). T2 now tries to acquire the lock, and
because it can’t (T1 holds the lock), it just keeps spinning. Because the lock is a spin
lock, T2 spins forever, and the system is hung.

- Just avoiding the use of spin locks, unfortunately, does not avoid the problem of
inversion. Imagine three threads, T1, T2, and T3, with T3 at the highest priority, and T1
the lowest. Imagine now that T1 grabs a lock. T3 then starts, and because it is higher
priority than T1, runs immediately (preempting T1). T3 tries to acquire the lock that T1
holds, but gets stuck waiting, because T1 still holds it. If T2 starts to run, it will have
higher priority than T1, and thus it will run. T3, which is higher priority than T2, is stuck
waiting for T1, which may never run now that T2 is running.
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- You can address the priority inversion problem in a number of ways. In the specific case
where spin locks cause the problem, you can avoid using spin locks. More generally, a
higher-priority thread waiting for a lower-priority thread can temporarily boost the lower
thread’s priority, thus enabling it to run and overcoming the inversion, a technique known
as priority inheritance. A last solution is simplest: ensure all threads have the same
priority.

- Using Queues - Sleeping Instead Of Spinning:
- The real problem with our previous approaches is that they leave too much to chance.

The scheduler determines which thread runs next; if the scheduler makes a bad choice,
a thread runs that must either spin waiting for the lock, or yield the CPU immediately.
Either way, there is potential for waste and no prevention of starvation.

- For simplicity, we will use the support provided by Solaris, in terms of two calls: park() to
put a calling thread to sleep, and unpark(threadID) to wake a particular thread as
designated by threadID. These two routines can be used in tandem to build a lock that
puts a caller to sleep if it tries to acquire a held lock and wakes it when the lock is free.

- We do a couple of interesting things in this example. First, we combine the old
test-and-set idea with an explicit queue of lock waiters to make a more efficient lock.
Second, we use a queue to help control who gets the lock next and thus avoid
starvation.

- Here is the code:

- You might notice how the guard is used basically as a spin-lock around the flag and
queue manipulations the lock is using. This approach thus doesn’t avoid spin-waiting
entirely. A thread might be interrupted while acquiring or releasing the lock, and thus
cause other threads to spin-wait for this one to run again. However, the time spent
spinning is quite limited (just a few instructions inside the lock and unlock code, instead
of the user-defined critical section), and thus this approach may be reasonable.

- You might also observe that in lock(), when a thread can not acquire the lock, we are
careful to add ourselves to a queue, set guard to 0, and yield the CPU. A question for
the reader: What would happen if the release of the guard lock came after the park(),
and not before? Hint: something bad.

- You might further detect that the flag does not get set back to 0 when another thread
gets woken up. This is not an error, but rather a necessity. When a thread is woken up, it
will be as if it is returning from park(); however, it does not hold the guard at that point in
the code and thus cannot even try to set the flag to 1. Thus, we just pass the lock directly
from the thread releasing the lock to the next thread acquiring it.
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- Finally, you might notice the perceived race condition in the solution, just before the call
to park(). With just the wrong timing, a thread will be about to park, assuming that it
should sleep until the lock is no longer held. A switch at that time to another thread (say,
a thread holding the lock) could lead to trouble, for example, if that thread then released
the lock. The subsequent park by the first thread would then sleep forever, a problem
sometimes called the wakeup/waiting race.

- Solaris solves this problem by adding a third system call: setpark(). By calling this
routine, a thread can indicate it is about to park. If it then happens to be interrupted and
another thread calls unpark before park is actually called, the subsequent park returns
immediately instead of sleeping.

- Semaphores:
- Semaphores - A Definition:
- A semaphore is an object with an integer value that we can manipulate with two

routines; in the POSIX standard, these routines are sem wait() and sem post().
- Because the initial value of the semaphore determines its behavior, before calling any

other routine to interact with the semaphore, we must first initialize it to some value.
- Here is the code for initializing a semaphore:

- In the code, we declare a semaphore s and initialize it to the value 1 by passing 1 in as
the third argument. The second argument to sem_init() will be set to 0 in all of the
examples we’ll see. This indicates that the semaphore is shared between threads in the
same process.

- After a semaphore is initialized, we can call one of two functions to interact with it, sem
wait() or sem post().

- Here is the implementation for sem_wait() and sem_post():

- sem_wait(sem_t *sem) decrements (locks) the semaphore pointed to by sem. If the
semaphore's value is greater than zero, then the decrement proceeds, and the function
returns immediately. If the semaphore currently has the value zero, then the call blocks
until either it becomes possible to perform the decrement, or a signal handler interrupts
the call.

- sem_post(sem_t *sem) increments (unlocks) the semaphore pointed to by sem. If the
semaphore's value consequently becomes greater than zero, then another process or
thread blocked in a sem_wait() call will be woken up and proceed to lock the semaphore.

https://man7.org/linux/man-pages/man3/sem_wait.3.html
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- Binary Semaphores (Locks):
- Our first use will be one with which we are already familiar: using a semaphore as a lock.
- Here is the code:

- Looking back at the definition of the sem wait() and sem post() routines above, we can
see that the initial value should be 1.

To make this clear, let’s imagine a scenario with two threads. The first thread (Thread 0)
calls sem wait(); it will first decrement the value of the semaphore, changing it to 0.
Then, it will wait only if the value is not greater than or equal to 0. Because the value is
0, sem wait() will simply return and the calling thread will continue; Thread 0 is now free
to enter the critical section. If no other thread tries to acquire the lock while Thread 0 is
inside the critical section, when it calls sem post(), it will simply restore the value of the
semaphore to 1 and not wake a waiting thread, because there are none.
Here is a trace of the above example:

A more interesting case arises when Thread 0 holds the lock (it has called sem wait() but
not yet called sem post()), and another thread (Thread 1) tries to enter the critical section
by calling sem wait(). In this case, Thread 1 will decrement the value of the semaphore
to -1, and thus wait (putting itself to sleep and relinquishing the processor). When Thread
0 runs again, it will eventually call sem post(), incrementing the value of the semaphore
back to zero, and then wake the waiting thread (Thread 1), which will then be able to
acquire the lock for itself. When Thread 1 finishes, it will again increment the value of the
semaphore, restoring it to 1 again.
Here is a trace of the above example:

- Thus we are able to use semaphores as locks. Because locks only have two states (held
and not held), we sometimes call a semaphore used as a lock a binary semaphore.
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- Semaphores For Ordering:
- Semaphores are also useful to order events in a concurrent program.
- For example, a thread may wish to wait for a list to become non-empty, so it can delete

an element from it. In this pattern of usage, we often find one thread waiting for
something to happen, and another thread making that something happen and then
signaling that it has happened, thus waking the waiting thread.

- The Producer/Consumer (Bounded Buffer) Problem:
- The next problem we will confront in this chapter is known as the producer/consumer

problem, or sometimes as the bounded buffer problem.
- Problem Statement: We have a buffer of fixed size. A producer can produce an item and

can place it in the buffer. A consumer can pick items and can consume them. We need
to ensure that when a producer is placing an item in the buffer, then at the same time the
consumer should not consume any item. In this problem, the buffer is the critical section.

- To solve this problem, we need two counting semaphores – Full and Empty. “Full” keeps
track of the number of items in the buffer at any given time and “Empty” keeps track of
the number of unoccupied slots.
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When a producer produces an item then the value of “empty” is reduced by 1 because
one slot will be filled now. The value of mutex is also reduced to prevent consumer to
access the buffer. Now, the producer has placed the item and thus the value of “full” is
increased by 1. The value of mutex is also increased by 1 because the task of producer
has been completed and consumer can access the buffer.

As the consumer is removing an item from the buffer, therefore the value of “full” is
reduced by 1 and the value of mutex is also reduced so that the producer cannot access
the buffer at this moment. Now, the consumer has consumed the item, thus increasing
the value of “empty” by 1. The value of mutex is also increased so that producer can
access the buffer now.

I.e. Semaphores solve the problem of lost wakeup calls. In the solution below, we use
two semaphores, Full and Empty, to solve the problem. Full is the number of items
already in the buffer and available to be read, while Empty is the number of available
spaces in the buffer where items could be written. Full is incremented and Empty
decremented when a new item is put into the buffer. If the producer tries to decrement
Empty when its value is zero, the producer is put to sleep. The next time an item is
consumed, Empty is incremented and the producer wakes up. The consumer works
analogously.

- Reader-Writer Locks:
- Another classic problem stems from the desire for a more flexible locking primitive that

admits that different data structure accesses might require different kinds of locking.
- For example, imagine a number of concurrent list operations, including inserts and

simple lookups. While inserts change the state of the list, lookups simply read the data
structure; as long as we can guarantee that no insert is on-going, we can allow many
lookups to proceed concurrently. The special type of lock we will now develop to support
this type of operation is known as a reader-writer lock.

- Here is the code:
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- The code is pretty simple. If some thread wants to update the data structure in question,
it should call the new pair of synchronization operations: rwlock acquire writelock(), to
acquire a write lock, and rwlock release writelock(), to release it. Internally, these simply
use the writelock semaphore to ensure that only a single writer can acquire the lock and
thus enter the critical section to update the data structure in question.

- More interesting is the pair of routines to acquire and release read locks. When acquiring
a read lock, the reader first acquires lock and then increments the readers variable to
track how many readers are currently inside the data structure. The important step then
taken within rwlock to acquire readlock() occurs when the first reader acquires the lock;
in that case, the reader also acquires the write lock by calling sem wait() on the writelock
semaphore, and then releasing the lock by calling sem post().

- Thus, once a reader has acquired a read lock, more readers will be allowed to acquire
the read lock too; however, any thread that wishes to acquire the write lock will have to
wait until all readers are finished; the last one to exit the critical section calls sem post()
on “writelock” and thus enables a waiting writer to acquire the lock.

- This approach works as desired, but does have some negatives, especially when it
comes to fairness. In particular, it would be relatively easy for readers to starve writers.

- Finally, it should be noted that reader-writer locks should be used with some caution.
They often add more overhead and thus do not end up speeding up performance as
compared to just using simple and fast locking primitives.

- Thread Throttling:
- One other simple use case for semaphores is this: How can a programmer prevent too

many threads from doing something at once and bogging the system down? Answer:
decide upon a threshold for too many, and then use a semaphore to limit the number of
threads concurrently executing the piece of code in question. We call this approach
thread throttling, and consider it a form of admission control.

- Let’s consider a more specific example. Imagine that you create hundreds of threads to
work on some problem in parallel. However, in a certain part of the code, each thread
acquires a large amount of memory to perform part of the computation; let’s call this part
of the code the memory-intensive region. If all of the threads enter the memory-intensive
region at the same time, the sum of all the memory allocation requests will exceed the
amount of physical memory on the machine. As a result, the machine will start thrashing,
and the entire computation will slow to a crawl.

A simple semaphore can solve this problem. By initializing the value of the semaphore to
the maximum number of threads you wish to enter the memory-intensive region at once,
and then putting a sem wait() and sem post() around the region, a semaphore can
naturally throttle the number of threads that are ever concurrently in the dangerous
region of the code.
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- Common Concurrency Problems:
- Non-Deadlock Bugs:

- Atomicity-Violation Bugs: The desired serializability among multiple memory
accesses is violated.
E.g.

In the example, two different threads access the field proc info in the structure
thd. The first thread checks if the value is non-NULL and then prints its value; the
second thread sets it to NULL. Clearly, if the first thread performs the check but
then is interrupted before the call to fputs, the second thread could run
in-between, thus setting the pointer to NULL; when the first thread resumes, it will
crash, as a NULL pointer will be dereferenced by fputs.

- Order-Violation Bugs: The desired order between two groups of memory
accesses is flipped. The fix to this type of bug is generally to enforce ordering. As
discussed previously, using condition variables is an easy and robust way to add
this style of synchronization into modern code bases.
E.g.

The code in Thread 2 seems to assume that the variable mThread has already
been initialized and is not NULL. However, if Thread 2 runs immediately once
created, the value of mThread will not be set when it is accessed within mMain()
in Thread 2, and will likely crash with a NULL-pointer dereference. Note that we
assume the value of mThread is initially NULL; if not, even stranger things could
happen as arbitrary memory locations are accessed through the dereference in
Thread 2.

- Deadlock Bugs:
- Beyond the concurrency bugs mentioned above, a classic problem that arises in many

concurrent systems with complex locking protocols is known as deadlock.
- Deadlock occurs, for example, when a thread (Thread 1) is holding a lock (L1) and

waiting for another one (L2). Unfortunately, the thread (Thread 2) that holds lock L2 is
waiting for L1 to be released.
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- One reason why deadlocks occur is that in large code bases, complex dependencies
arise between components. Take the operating system, for example. The virtual memory
system might need to access the file system in order to page in a block from disk. The
file system might subsequently require a page of memory to read the block into and thus
contact the virtual memory system. Thus, the design of locking strategies in large
systems must be carefully done to avoid deadlock in the case of circular dependencies
that may occur naturally in the code.

- Another reason is due to the nature of encapsulation. As software developers, we are
taught to hide details of implementations and thus make software easier to build in a
modular way. Unfortunately, such modularity does not mesh well with locking.

- Conditions for Deadlock - There are four conditions need to hold for a deadlock to occur:
1. Mutual exclusion: Threads claim exclusive control of resources that they

require.
2. Hold-and-wait: Threads hold resources allocated to them while waiting for

additional resources.
3. No preemption: Resources cannot be forcibly removed from threads that are

holding them.
4. Circular wait: There exists a circular chain of threads such that each thread

holds one or more resources that are being requested by the next thread in the
chain.

- Circular wait: Probably the most practical prevention technique and certainly one that is
frequently employed is to write your locking code such that you never induce a circular
wait. The most straightforward way to do that is to provide a total ordering on lock
acquisition. For example, if there are only two locks in the system (L1 and L2), you can
prevent deadlock by always acquiring L1 before L2. Such strict ordering ensures that no
cyclical wait arises; hence, no deadlock.

Of course, in more complex systems, more than two locks will exist, and thus total lock
ordering may be difficult to achieve. Thus, a partial ordering can be a useful way to
structure lock acquisition so as to avoid deadlock.

- Hold-and-wait: The hold-and-wait requirement for deadlock can be avoided by acquiring
all locks at once, atomically.

- No Preemption: Because we generally view locks as held until unlock is called, multiple
lock acquisition often gets us into trouble because when waiting for one lock we are
holding another. Many thread libraries provide a more flexible set of interfaces to help
avoid this situation. Specifically, the routine pthread mutex trylock() either grabs the lock
if it is available and returns success or returns an error code indicating the lock is held. In
the latter case, you can try again later if you want to grab that lock.

- Deadlock Avoidance via Scheduling: Instead of deadlock prevention, in some
scenarios deadlock avoidance is preferable. Avoidance requires some global knowledge
of which locks various threads might grab during their execution, and subsequently
schedules said threads in a way as to guarantee no deadlock can occur.

- Detect and Recover: One final general strategy is to allow deadlocks to occasionally
occur, and then take some action once such a deadlock has been detected.


